
CS103 Handout 15
Fall 2012 November 2, 2012

Problem Set 6

How much firepower do context-free languages have? What are their limits? And just how awe-
some are PDAs? In this problem set, you'll get to find out!

In any question that asks for a proof, you must provide a rigorous mathematical proof. You can-
not draw a picture or argue by intuition. You should, at the very least, state what type of proof
you are using, and (if proceeding by contradiction, contrapositive, or induction) state exactly what
it is that you are trying to show. If we specify that a proof must be done a certain way, you must
use that particular proof technique; otherwise you may prove the result however you wish.

As always, please feel free to drop by office hours or send us emails if you have any questions.
We'd be happy to help out.

This problem set has 125 possible points. It is weighted at 7% of your total grade. The earlier
questions serve as a warm-up for the later problems, so do be aware that the difficulty of the prob-
lems does increase over the course of this problem set.

Good luck, and have fun!

Due Friday, November 9th at 2:15 PM

Problem One: Designing CFGs (24 Points)

Below are a list of alphabets and languages over those alphabets. For each language, design a context-
free grammar that generates that language.

i. For the alphabet Σ = { 0, 1, 2 }, write a CFG for the language L = { w Σ* | ∈ w contains 00 as
a substring }

ii. For the alphabet Σ = { 0, 1, 2 }, write a CFG for the language L = { w Σ* | ∈ w does not con-
tain both 0 and 1. }

iii. For the alphabet Σ = { 0, 1, 2 }, write a CFG for L = { 0i1j2k | i, j, k ∈ ℕ (∧ i = j ∨ i = k) }

iv. Suppose that you want to write a context-free grammar that describes function prototypes in C
or C++. Let Σ = { int, double, (,), ",", name, ;}, where name is a symbol that represents
the name of some function or variable. Let L = { w Σ* | ∈ w is a valid function prototype }.
So, for example, the following would all be valid function prototypes:

int name();

double name(int name);

double name(double name, int name, double name);

Assuming that each argument to a function must have a name (though in C and C++ names are
optional), write a CFG that generates L. Functions may take any number of arguments.

You don't need to worry about generating spaces in-between the symbols you produce. Typi-
cally, a compiler would handle that in a separate step.

v. For the alphabet Σ = {0, 1}, write a CFG for the language PAL = { w Σ* | ∈ w is not a palin-
drome }. That is, w is not the same when read forwards and backwards. Thus 001 ∈ PAL and
100101 ∈ PAL, but 101 ∉ PAL and 11 ∉ PAL.

Problem Two: The Complexity of Addition (12 Points)

On the previous problem set, we began addressing the question

How hard is it to add two numbers?

We will now directly answer that question.

Consider the language ADD = {1m+1n=1m + n | m, n ∈ ℕ} over the alphabet Σ = {1, + , =}. That is,
ADD consists of strings encoding two unary numbers and their sum. As you proved on the previous
problem set, ADD is not regular.

i. Write a context-free grammar for ADD. This proves that ADD is context-free.

ii. Design a deterministic PDA that recognizes ADD (recall that a DPDA is a PDA in which for
any combination of a state, input symbol, and stack symbol there is at most one transition that
can be followed, including ε-transitions). This proves that ADD is not only a context-free lan-
guage, but also a deterministic context-free language.

Problem Three: The Complexity of Pet Ownership (16 Points)

On the previous problem set, you designed a DFA for taking your dog on a walk with a leash. In this
problem, you will see what happens when you take off your dog's leash.

Let Σ = {Y, D}, where Y represents you moving one unit forward and D represents your dog moving
one step forward. Then a string of Ys and Ds represents you and your dog going for a walk. For exam-
ple, in the string YYDY, you end up two steps ahead of your dog, while in the string DDDDYY, your dog
takes off and ends up two steps ahead of you.

If we consider the language of strings representing walks where you and your dog end up at the same
location, we get the language DOGWALK = { w Σ* | ∈ w has the same number of Ys and Ds }.

i. Write a context-free grammar that generates DOGWALK. This proves that DOGWALK is con-
text-free.

ii. Design a deterministic PDA that recognizes DOGWALK. This proves that DOGWALK is not
only a context-free language, but also as deterministic context-free language.

Problem Four: Uncertainty about Ambiguity (16 Points)

In this question, you'll explore some properties of ambiguous grammars. Consider the language

GE01= { 0n1m | n ≥ m }

Here is one possible context-free grammar for GE01:

S → 0S | 0S1 | ε

You may want to play around with this grammar a bit before answering these questions.

i. Show that this grammar is ambiguous by providing a string in GE01 and two different parse
trees for that string.

ii. Rewrite this grammar so that it is unambiguous. Explain, but do not formally prove, why your
new grammar is unambiguous.

iii. Prove or disprove: If a grammar G is ambiguous, then there is no DPDA that accepts ℒ(G).

Problem Five: Shrinking PDAs (20 Points)

As you saw in lecture, any CFG can be converted into a PDA with just three states, meaning that the
full power of the context-free languages can be expressed by three-state PDAs. This question asks you
to see just how few states PDAs can have while retaining their expressive power.

i. Show how to modify the construction from lecture that turns CFGs into PDAs so that the gener-
ated PDA has only two states instead of three. You should briefly describe how your construc-
tion works, but you don't need to formally prove that it is correct.

ii. Prove that for any PDA P, there is a PDA P' such that (ℒ P) = (ℒ P') and P' has only two states.

iii. Your result from (ii) shows that any PDA can be converted into an equivalent PDA with just
two states. However, it is not always possible to convert a PDA into an equivalent PDA with
just one state. Find a context-free language that does not have a one-state PDA, then prove that
it does not have one.

We will cover the material necessary to solve these problems in Monday's lecture.

Problem Six: The Complexity of Exponentiation (12 Points)

On the previous problem set, we began addressing the question

How hard is it to check whether a number is a perfect power of two?

A number is a power of two if it can be written as 2n for some natural number n. Consider the language

POWER2 = { 12 n

| n ∈ ℕ } over the alphabet Σ = {1}. That is, POWER2 contains all strings whose

lengths are a power of two. For example, the smallest strings in POWER2 are 1, 11, and 1111.

On the previous problem set, you proved that POWER2 is not regular using the pumping lemma for
regular languages. Now, using the pumping lemma for context-free languages, prove that it is not con-
text-free either. (Hint: As with last time, you may want to use the fact that n < 2n for all n ∈ ℕ)

Problem Seven: The Complexity of String Searching (20 Points)

On the previous problem set, we began addressing the question

How hard is it to search a string for a substring?

Given a string to search for (called the pattern) and a string in which the search should be conducted
(called the text), we want to determine whether the pattern appears in the text. To encode this as a lan-
guage problem, we let Σ = {0, 1, ?} and encoded questions of the form “does pattern string p appear in
text t” as the string p?t. For example:

“Does 0110 appear in 1110110 ?” would be encoded as 0110?1110110

“Does 11 appear in 0001 ?” would be encoded as 11?0001

“Does ε appear in 1100 ?” would be encoded as ?1100

Let the language SEARCH = { p?t | p, t {∈ 0, 1}* and p is a substring of t }. On the last problem set,
you proved that SEARCH is not regular using the pumping lemma for regular languages. Now, using
the pumping lemma for context-free languages, prove that SEARCH is not context-free either.

As a hint, the pattern and text string you show cannot be pumped must use both 0s and 1s. In fact, if
you restrict the pattern and text strings to strings consisting solely of 0s, you get the language

LE = { 0n?0m | n, m ∈ ℕ ∧ n ≤ m }

which is context-free.

Problem Eight: Course Feedback (5 Points)

We want this course to be as good as it can be, and we'd really appreciate your feedback on how we're
doing. For a free five points, please answer the following questions. We'll give you full credit no mat-
ter what you write (as long as you write something!), but we'd appreciate it if you're honest.

i. How hard did you find this problem set? How long did it take you to finish? Does that seem
unreasonably difficult or time-consuming for a five-unit class?

ii. Did you attend Monday's problem session? If so, did you find it useful?

iii. How is the pace of this course so far? Too slow? Too fast? Just right?

iv. Is there anything in particular we could do better? Is there anything in particular that you think
we're doing well?

Submission Instructions

There are three ways to submit this assignment:

1. Hand in a physical copy of your answers at the start of class. This is probably the easiest way
to submit if you are on campus.

2. Submit a physical copy of your answers in the filing cabinet in the open space near the handout
hangout in the Gates building. If you haven't been there before, it's right inside the entrance la-
beled “Stanford Engineering Venture Fund Laboratories.” There will be a clearly-labeled filing
cabinet where you can submit your solutions.

3. Send an email with an electronic copy of your answers to the submission mailing list
(cs103-aut1213-submissions@lists.stanford.edu) with the string “[PS6]” somewhere in the sub-
ject line. If you do submit electronically, please submit your assignment as a single PDF if at
all possible. Sending multiple image files makes it hard to print and grade your submission.

Extra Credit Problem: Palindromes are Nondeterministic (5 Points)

In lecture, we claimed that the language { w {∈ 0, 1}* | w is a palindrome } is context-free, but not de-
terministic context-free. That is, there is no DPDA that accepts this language. Prove this.

mailto:cs103-aut1213-submissions@lists.stanford.edu

